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J. Phys. A: Math. Gen. 19 (1986) 3013-3016. Printed in Great Britain 

Path integral evaluation of the Bloch density matrix for an 
oscillator in a magnetic field 
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Numara Research Laboratories, PO Box 50162, Caracas, 1050, Venezuela 

Received 25 November 1985 

Abstract. The non-relativistic propagator for a localised oscillator in a magnetic field of 
arbitrary strength is evaluated analytically by performing the path integral in polar coordin- 
ates. The result is then used to obtain the Bloch density matrix for the system as well as 
the eigenvalues of the Hamiltonian concerned. 

1. Introduction 

It has been recently shown by March and Tosi (1985) that it is possible to calculate 
the full canonical or Bloch density matrix for a localised oscillator in a magnetic field 
of arbitrary strength by solving the Bloch equation subject to a completeness boundary 
condition. In order to do so, they generalise the assumptions of Sondheimer and 
Wilson (1951) about the functional form of the density matrix and obtain five first-order 
differential equations through which the desired result is derived. 

We would like to show that this result follows directly from the analytical evaluation 
in polar coordinates of the corresponding path integral expression for the non-rela- 
tivistic propagator of the system. 

The Schrodinger equation 

(1) 
a 

H W ( r ,  t )  = ih-V(r, t )  
at 

containing H, the Hamiltonian of the system, as a differential operator can be replaced 
by an integral equation 

9 ( r y  t )  = K ( r ,  r,; t ) 9 ( r o ,  0) dr, (2) J 
subject to the initial condition K ( r ,  r,; 0) = S ( r  - r,). The kernel of equation ( 2 )  
corresponds to the propagator of the wavefunction 9 from the point r, to r in time t. 

In Feynman’s formulation of quantum mechanics (1948), the propagator is given 
by the path integral 

K ( r y  r,; t )  = exp[iS(r, ro; t ) / h ]  Dx (3) J 
t Present address: Physics Department, Yale University, New Haven, CT 06520, USA. 
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where integrations are over all possible paths starting at ro = x(0) and terminating at 
r = x( t ) .  The function S(  r, r,; t )  in the integrand is the classical action 

S(r, ro; t )  = 1,‘ L(X, X) dT (4) 

and L(x, x)  is the Lagrangian of the system in question. 

eigenfunctions q, and eigenvalues E ,  of the Hamiltonian as 
Alternatively, we can also express the propagator of the system in terms of the 

K(r ,  ro; t )  = x q ? ( r o ) q , ( r )  exp(-i&,t/fi). ( 5 )  

2. The propagator 

The specific Hamiltonian we work with is 

(6) 
( p  -feB x r)* H =  +;Kr2 

2m 

where the magnetic field B is applied along the z axis, and the gauge is chosen such 
that the vector potential A is given by +cB x r. 

The corresponding Lagrangian in cylindrical coordinates ( r ,  0, z )  is 

L = + m ( i * +  r2e2+2wr’e) -+Kr2+ ( f m Z 2 - t K Z 2 )  ( 7 )  
where w = eB/2m is the Larmor frequency. 

Notice that we could have just as well considered the potential K(x*+  y 2 )  + hz2 
since we can separate the motion in the z direction from this Lagrangian; this motion 
is readily solvable and contributes trivial factors corresponding to a one-dimensional 
harmonic oscillator which can be easily incorporated into any of the equations, if 
needed. We will thus omit it in the forthcoming analysis. The remaining Lagrangian 
is then in polar coordinates ( I ;  e). Letting 

& = e + w t  (8) 
be a new angular variable, we have 

e = c j - w  

92+2w9=cj2-w2 

L = f m ( i 2 +  r2qj2-n2r2) 

and, therefore, we can write (7 )  as 

where 

R2 = w 2  + K /  m. (11) 
Equation (10) is the Lagrangian of a two-dimensional harmonic oscillator in 

coordinates ( r ,  4 )  with basic frequency R. The corresponding propagator has been 
obtained by performing the path integral in polar coordinates ( r ,  4)  by Peak and 
Inomata (1969), resulting in 
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The Bloch density matrix is obtained by substituting t for -ihp in the above 
equation, thus yielding 

[ ( r 2 + r i )  c o s h ( p h R ) - 2 r r o c o s ( 4 - ~ ~ ) l  
- m R  

exp( 2h  sinh(ph0)  

We must go back to our original coordinates. Using (8), we substitute 

4 - $,= ( 8  - 0,) -iphw (14) 

in (13) and finally obtain 
- m R  

{ ( r 2 + r i )  cosh(phR) 
m R  

C(rr0p)'27rh s inh(ph0)  

-2rr,[cos( 0 - e,) cosh(phw) + i  sin(6 - e,) sinh(phw)]} (15)  

which is the desired result. Let us check it, reproducing some special cases. 
(a) In the limit 0 + 0 and w -+ 0, we should obtain the free particle density matrix: 

which we do. 

oscillator density matrix: 
(b) In the absence of a magnetic field ( B = 0 ) ,  we should obtain the harmonic 

m R  
lim C( r rop)  = 
w - 0  27rh sinh(phR) 

which is identical to (13), and therefore correct. 
(c) In the limit K + 0, R = w and we have a particle in a magnetic field: 

lim C(rr ,p)  = mu exp( - z { ( r 2 + r i )  coth(phw) 
R-w 2n-A sinh(phw) 

) -2rr,[cos( 8 - e,) coth(phw) + i sin( 8 - e,)]} 

obtaining the result of Sondheimer and Wilson (1951), as we must. 

3. The partition function and the energy eigenvalues 

We can obtain the partition function as follows: 

Z ( p )  = lom lo2= r dr  d e  C ( r r p ) .  
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Using (15), we obtain 

This result was derived by Darwin (1931) using the eigenenergies obtained from 

We now rewrite (20) as follows: 
the Schrodinger equation to calculate the sum Xi exp(-p&,). 

1 
’(’) = 4 sinh[pfi (R + w)/2] sinh[ p h  (a - w )/2] 

which easily allows series expansions in powers of exponentials: 

and from here we can read the energy eigenvalues as 

&(I, n ) = h R + ( J + n ) h R + ( ( I - n ) h w  (23) 

which correctly reproduces the harmonic oscillator eigenvalues ( U  + 0) as well as those 
of a charged particle in a magnetic field (R + U ) .  

4. Conclusions 

The principal result of this paper is equation (15). Besides being an exact result, its 
main importance lies in the fact that it has been derived by direct evaluation of the 
propagator path integral in polar coordinates. 

The difficulty of the direct approach in Cartesian coordinates is underscored by the 
fact that March and Tosi (1989, as well as Davies (1985) in an essentially equivalent 
formulation to that of March and Tosi (1989, obtained complete solutions only through 
alternative approaches to this problem, given that Cheng (1984) and others, although 
being able to show the existence of an exact result, could not succeed in obtaining 
simple, complete and explicit expressions for the propagator. 

However, this method is amenable only to specific types of problems, being 
inadequate to obtain the result of Davies (1985) who considers the most general case. 
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